DUBLIN, May 31, 2016 /PRNewswire/ --
Research and Markets has announced the addition of the "Self-driving Vehicle Actuator Industry Report, 2016" report to their offering.
As far as ADAS is concerned, a simple alarm is not enough, and even at the critical moment, active braking system, active deceleration or steering system are needed, for machines are more reliable than people. And controllers and actuators are thus introduced. An actuator is very simple, consisting of brake caliper, steering gear, and air valve, while a controller involves ETC (Electric Throttle Control) and EPS (Electric Power Steering).
The brake system is very complicated, and the brake system for the ordinary gasoline and diesel passenger vehicle is controlled by hydraulic system and vacuum servo. But for passenger vehicles, passive safety is superior to active safety. Hence, ESP (ESC, Electronic Stability Control) needs standard configuration, and the brake control system is ESP, which can also control ETC.
To enable active ADAS and self-driving, deep communication between ADAS and controllers is indispensable, which requires controller manufacturers to provide deep support. Of course, they can also create a new system to bypass the original controller. However, the original controller has gained safety certification for scores of years, and the new system has not been certified, which greatly adds costs and complexity.
Moreover, it is not realistic for vehicles to be mass-produced. Therefore, it is necessary to win the great support from controller manufacturers. But these controller manufacturers have their own ADAS, unwilling to give up this market. As a result, controller manufacturers do not make available some ports or provide support, so that customers are forced to choose their full set of ADAS. So we can see that the whole ADAS, including sensor algorithm, of Chang'an and Geely is all from Bosch, which has a great impact on China-made sensor manufacturers.
Given the ESC system is paramount, most OEMs have related technology. Various names for ESC, hence, have sprung up. Although the prices for these ESC systems are higher than those of Bosch and Continental, manufacturers still use them to maintain their own independence, with Hyundai, for example, adopting Mando's ESC system. It takes more than 20 years to develop a new ESC system, during which period large amount of capital and practice cost will be incurred.
Most electric vehicles still adopt the braking system of fuel vehicles and gain additional braking power with EVP or Bosch iBooster. As for these electric vehicles, ESC is still the master controller of braking system. But things have changed. As electric vehicles can, through AC motor, achieve reverse deceleration and recover braking energy, the load of EV braking system reduces considerably. And the new technology drive-by-wire braking system can thus be used.
Drive-by-wire braking system has been extensively used in F1cars, and is replaced when the driving range reaches less than 2,000 km, which causes high costs. Its braking sensitivity is much higher than that of traditional braking systems. Moreover, its flexibility increases dramatically. Hence, the braking system is very practical in the field of ADAS and self-driving.
This is why Tesla can achieve intelligentization more easily. Drive-by-wire braking system substitutes ESC system or TCS (traction control system), which allows vehicle manufacturers to get rid of dependence on ESC manufacturers. Tesla Model S, Porsche 918 Spyder, and Audi R8-ETRON adopt this design. There are two systems inside the car: one is traditional front wheel hydraulic brake without EVP, which has the function of ABS; the other is rear-wheel drive-by-wire braking system, which uses electrical signal and motor to control brake calipers.
Key Topics Covered:
1 Braking and Steering System
2 Braking System and EPS Industry
3 Braking System and EPS Manufacturers
Companies Mentioned
- Advics
- Akebono
- BWI Group
- Bosch
- Continental Automotive
- Haldex
- Hitachi Automotive Systems
- Jtekt
- Mando
- NSK
- Nexteer
- Nissin Kyogo
- ThyssenKrupp
- Tuopu Group
- Vie Science & Technology
- ZFTRW
- Zhejiang Asia-Pacific Mechanical & Electronic
For more information visit http://www.researchandmarkets.com/research/xc68fl/selfdriving
Media Contact:
Research and Markets
Laura Wood, Senior Manager
press@researchandmarkets.com
For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716
Share this article